
I

NASA CASE NO.

PRINT FIG.

NPO-18817-1-CU

71

The invention disclosed in this document resulted from

research in aeronautical and space activities performed under

programs of the National Aeronautics and Space Administration. The

invention is owned by NASA and is, therefore, available for

licensing in accordance with the NASA Patent Licensing Regulation

(14 Code of Federal Regulations 1245.2).

To encourage commercial utilization of NASA-Owned inventions,

it is NASA policy to grant licenses to commercial concerns.

Although NASA encourages nonexciusive licensing to promote

competition and achieve the widest possible utilization, NASA will

consider the granting of a limited exclusive license, pursuant to

the NASA Patent Licensing Regulations, when such a license will

provide the necessary incentive to the licensee to achieve early

practical application of the invention.

Address inquiries and all applications for license for this

invention to NASA Patent Counsel, NASA Resident office-JPL, Mail

Code 180-801, 4800 Oak Grove Drive, Pasadena, CA 91109.

Approved NASA forms for application for nonexclusive or

exclusive license are available from the above address.

Serial Number: 07/942,499

Filed Date: _J A_lqus_t__2_1 1992 NRO-JPL

(NASA-Case-NP0-18817-I-CU) N93-12202 =tober 7, 1992
_ACKWARD ASSEMBLY PLANNING WITH DFA

ANALYSIS Patent Application (NASA)
42 p Unc I a s

G3/31 0123629

Inventors: Sukhan Lee

Contractor: Jet Propulsion Laboratory

JPL Case No. 18817
NASA Case No. NPO-18817-1-CU

Date: August 26, 1992

BACKWARD ASSEMBLY PLANNING WITH DFA ANALYSIS

AWARDS ABSTRACT

An assembly planning system that operates based on a recursive

decomposition of assembly into subassemblies, and analyzes

assembly cost in terms of stability, directionality, and

manipulability to guide the generation of preferred assembly

plans. The planning in this system incorporates the special

processes, such as cleaning, testing, labeling, etc. that must

occur during the assembly, and handles nonreversible as well as

reversible assembly tasks through backward assembly planning. In

order to increase the planning efficiency, the system avoids the

analysis of decompositions that do not correspond to feasible

assembly tasks. This is achieved by grouping and merging those

parts that can not be decomposable at the current stage of

backward assembly planning due to the requirement of special

processes and the constraint of interconnection feasibility. The

invention includes methods of evaluating assembly cost in terms

of the number of fixtures (or holding devices) and reorientations

required for assembly, through the analysis of stability,

directionality, and manipulability. All these factors are used

in defining cost and heuristic functions for an AO* search for

an optimal plan.

SerialNo C____)-_/ _____--

Filing Date_._.__.__ / .__g>-- _"3--

Cont;-act No. NAS7-9!8

Contractor Ca[tech/JPb

Pasadena CA. 91109

!.

5

10

JPL Case No. 18817

NASA Case No. NPO-18817-1-CU

Attorney Docket No. JPL/044-92

Serial No._.
Filing Date_ oc' -2 _ -_2_ t--

CoP,t/'act No. N,_,S7-918
c_t_t Apphcat]bn

Ca_tech/JpL-.

Pasadena CA. 91 ! 09
{City} ('State_

(Zip)

BACKWARD ASSEMBLY PLANNING WITH _-----

ANALYSIS

BACKGROUND OF THE INVENTION

Origin of the Invention:

The invention described herein was made in the performance of work

under a NASA contract, and is subject to the provisions of Public Law

96-517 (35 USC 202) in which the contractor has elected not to retain

title.

t

15

Technical Field:

The invention relates to a method and apparatus for performing back-

ward assembly planning and operation using backward search of assem-

bly sequences.

2O

25

3O

Background Art:

Assembly planning can be based either on the forward search of as-

sembly sequences or on the backward search of assembly sequences, given

geometric and topological information on the product to be assembled.

The backward search of assembly sequences is often implemented in the

form of disassembly planning, assuming that an assembly sequence can

be obtained by reversing the order of the corresponding disassembly se-

quence. Although there are cases where assembly sequences may not

be the reverse of the corresponding disassembly sequences, disassembly

planning is widely used in the research community due to its advantage

in planning efficiency: The disassemblability of a part or a subassembly

directly implies the satisfaction of precedence relationship, whereas, in

the forward search, the satisfaction of precedence relationship between a

pair of mating parts may not be known immediately until an exhaustive

search is completed.

Much effort has been expended to make assembly planning or disas-

sembly planning more autonomous, more efficient, and closer to reality.

5

10

15

2O

25

3O

Early work on interactive assembly planning was concerned about for-

mulating a necessary and sufficient set of questions to be answered by

the human designer that leads to the complete specification of precedence

relationships with the minimum number of question-and-answering oper-

ations. Subsequently, the emphasis has been moved to automatic reason-

ing of geometric interference or path planning as a means .of identifying

precedence relationships in assembly. The feasibility of automating ge-

ometric reasoning in assembly planning is fueled by the development of

powerful computer-based geometric modeling and reasoning tools. The

automatic test for the existence of a mating path in disassembly or as-

sembly is still computationally very expensive; and this significantly lim-

its the number of parts that can be handled by an automatic assembly

planner, since the number of feasible assembly sequences may grow expo-

nentially, so does the number of required tests for path existence. One of

the current research goals is thus to achieve planning efficiency by avoid-

ing unnecessary tests for path existence, as proposed by such methods

as the logical inference of path existence based on the previous results

on path planning, the test of necessary conditions for successful mating,

which are simple to implement, prior to the application of path pla_:ing,

the use of path finding heuristics.

It becomes clear that, to bring assembly planning closer to reality, we

need to consider not only identifying the geometric interference in part

mating, but also many other factors which affect assembly planning in

a real factory environment: special processes such as testing, labeling,

painting, grinding, etc. to be performed during assembly; physical con-

straints due to magnetic and electrostatic interference; stability of parts

and subassemblies which directly affect assembly cost due to required

fixtures; part and subassembly manipulability; the required number of

reorientations during assembly; tolerance propagation; as well as the

physical constraints imposed by assembly layouts. The above factors

should eventually be incorporated into the process of identifying prece-

dence relationships as well as selecting preferred assembly sequences.

For instance, the required special processes, the physical interference,

and the stability requirement can be used in precedence indentification

together with the geometric interference condition. While, the stability,

I

5

10

the manipulability, the assembly direction and reorientation, and the toI-

erance associated with parts, subassemblies, and their matings can be

used in selecting prefered assembly sequences. However, the selection of

a cost-effective assembly sequence is not simple and remains as one of

major research issues in assembly planning. This is not only due to the

fact that evaluating the above mentioned conditions is difficult and com-

putationally expensive but also the optimality in assembly planning may

not be achievable through the local optimization of the above conditions

but requires the consideration of global effect.

The present invention includes a process for backward asseml)ly plan-

ning and performance which takes the above issues into consideration.

15

2O

25

3O

SUMMARY OF THE INVENTION

A method of selecting and performing a sequence of sub- assembly

operations to construct an assembly begins by identifying all direct sub-

assemblies of the assembly by identifying potential subassemt)lies of the

assembly, and, for each potential subassembly, determining whether the

potential subassembly is a direct subassembly of the assembly by: (1) de-

termining whether there is a common axis of separation between the po-

tential subassembly and the remainder of the assembly, (2) determining

whether the potential subassembly is stable, and (3) determining whether

there is a direct unobstructed path between the potential subassembly

and the remainder of the assembly. The identifying potential subassem-

blies is performed by identifying all liaisons connecting pairs of nodes of

each potential subassembly of the assembly, and, for each of the liaisons,

merging liaisons for which there is no accessibility for interconnection

between the subassembly and the assembly and merging liaisons which

have no force-deliverable paths to the assembly. It is further performed

by identifying special processes of the assembly of the type comprising

testing and cleaning which require certain nodes of the assembly to be

processed together during a special process. The identifying potential

subassemblies further consists of grouping together nodes of the assem-

bly which must be processed together during special processes of the

5

10

15

2O

25

3O

type comprising cleaning and testing of subassemblies, whereby to pre-

vent identification of potential subassemblies comprising corresponding

nodes of the grouping. The overall process further consists of identifying

precedent constraints corresponding to required sequences of assembly

of parts of the assembly, and the identifying potential subassemblies fur-

ther consists of grouping together nodes of the assembly which must

be assembled in a hierarchical sequence corresponding to the precedent

constraints, whereby to prevent identification of potential subassemblies

comprising corresponding nodes of the hierarchical sequence. The deter-

mining whether potential subassembly is stable consists of determining

that one of (a) the potential subassembly has more only one transla-

tional degree of freedom and only one rotational degree of freedom, the

one rotational degree of freedom being about the translational axis only,

or (b) any floating of disconnected liaison of the potential subassem-

bly includes a node of the remainder of the assembly. The determining

whether the potential subassembly is stable consists of determining that

the potential subassembly is unstable if either the potential subassembly

is unstable or the remainder of the assembly is unstable. The process

further consists of computing a cost of mating and asselnblying each

direct subassembly, by determining the number of part reorientations

required to construct the subassembly and determining the number of

mating operations required to construct the subassembly. The process

further consists of representing the assembly as a tree of AND and OH

nodes beginning with all direct subassemblies as bottom nodes of the tree

and concluding with the assembly as the top node of the tree, the tree

comprising branches connecting adjacent ones of the nodes, the branches

corresponding to alternative decompositions of the assembly and com-

puting a local cost of each OR node of the tree and eliminating branches

corresponding to OR nodes of higher costs, and performing an assembly

operation of subassemblies corresponding to the tree after the eliminat-

ing. The local cost computation consists of determining the relative cost

due to the stabilization of the direct subassembly and the remainder of

the assembly by using holding devices, and determining the relative cost

due to reorientation operations.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is an exploded view of a flashlight assembly employed as a tu-

torial example of an application of the present invention.

5

10

Fig. 2 is a liaison graph of the flashlight assembly of Fig. 1.

Fig. 3 illustrates the special process forest of the flashlight assembly

of Fig. 1.

Fig. 4 illustrates two assemblies in which an assembly sequence is not

the reverse of a disassembly sequence.

15

Fig. 5 illustrates the clustering process of the flashlight assembly of

Fig. 1.

Fig. 6 illustrates the special process forest of Fig. 3 after removing

the root node. -

2O

Fig. 7 illustrates how the internal freedom of motion of a subassembly

is determined.

Fig. 8 illustrates an AND-OR tree employed in the invention as the

search space for the AO* algorithm.

25

Fig. 9 illustates the AND-OR tree corresponding to the flashlight as-

sembly of Fig. 1.

Fig. 10 illustrates the merging and grouping operations corresponding

to the liaison graph of Fig. 2.

3O Fig.

Fig.

11 illustrates the overall process of the invention.

12 illustrates a system for carrying out the invention.

DETAILED DESCRIPTION OF THE INVENTION

6

5

10

15

2O

25

3O

1 Assembly Representation

An assembly A is a cluster of parts assembled together by a certain

assembly sequence, which maintains a particular geometric relationship

among parts. More specifically, a cluster of parts, P, is considered as an

assembly, iff

1) Every part in P has at least one geometric constraint in relation with

other parts in P.

2) There exists at least one assembly sequence which can put all the

parts of P together to satisfy the geometric constraints imposed on

themselves.

3) P is stable in a sense that it can maintain its geometric constraints

either by itself or through the aid of holding devices.

The above definition extends the notion of conventional assembly to

include a disconnected"and non-self-stable assembly that may be gener-

ated during the assembly of the product.

Formally, an assembly A is represented by 4-tuples:

A = {P(A),Gz(A),Gp(A),I-I(A)}, where P(A) represents the set of

parts constituting A, GL(A) the attributed liaison graph representation

of A, Gp(A) the special process and constraint forest associated with A,

and I](A) the set of all the feasible assembly sequences for A.

1.1 Attributed Liaison Graph

A liaison is said to exist between a pair of parts if one part constrains

the freedom of motion of the other by a direct contact. A liaison graph

is a graph, G, G = (N, E), with N representing a set of nodes, and E

representing a set of edges. A node n, n E N, is assigned to each part

of an assembly, and an edge e, e E E, is assigned to a liaison between a

pair of parts. An attributed liaison graph is a liaison graph with frames

attached to individual nodes and edges of the liaison graph to describe

the attribute associated with a node or an edge. A part frame attached

to each node describes the attributes associated with a part, including

1) the part geometry and coordinate, 2) the mating volmnes and the

contact surfaces as part features, and 3) the physical properties of a part

5

10

15

2O

25

3O

such as weight. An edge frame attached to each liaison describes at-

tributes associated with the liaison. The attributes of a liaison consist

of 1) the parts in associated with the liaison, 2) the mating features and

mating directions, 3) the mating type such a s insertion and place-on,

and 4) the interconnection type such as Attachment, Force-fit, Connec-

tors/Retainers, Push-and-Twist, Screw, Glue, or Welding. Thus, GL(A)

contains information on the topology of part configurations, the geom-

etry and relative pose of parts in A, the interconnection mechanisms of

part connections, and the local freedom of motion in part mating.

1.2 Special Process and Constraint Forest

The assembly of a product involves not only the interconnection of parts

to form required liaisons but also the execution of special processes such

as testing, cleaning, surface treatment, painting and packaging during as-

sembly. In addition, there may exist assembly constraints that should be

satisfied in order to prevent electrostatic, electromagnetic, and thermal

interference, as well as mechanical vibrations and chemical pollutions,

during assembly. The accomplishment of special processes and the satis-

faction of assembly constraints impose precedence relationships in assem-

bly. Especially, assembly precedence relationships should be generated

in such a way as to guarantee the execution of multiple special processes

in a certain precedence order.

Special processes and assembly constraints associated with A are rep-

resented by the special process and constraint forest, G_,(.4), consisting

of the special process forest, Gs(A), and the assembly constraint forest,

Go(A).

The special process forest, Gs(A), consists of a set of trees having the

following properties:

1) A node n_ of Gs(A) represents a special process, Si. n_ is associated

with a tuple (Pi s, _E_), where P_ represents a set of parts

involved in Si, and E_ represents the union of the parts involved

in Si and all the special processes that should precede Si: _E_ =

PiS (J{tJj Z_},Vn_: n; is a child of n_ (a recursive definition).

2) A branch b_ connecting the two nodes, n_ and n_, represents the

5

10

15

2O

25

3O

precedence relationship between Si and Sj: Sj < Si if n_ is a child

of n,'.. Special processes corresponding to the sibling nodes of a tree

or to the nodes of different trees have no precedence relationship.

The assembly constraint forest, Gc(A), consists of a set of trees having

the following properties:

1) A node n_ of Gc(A) represents a liaison I/of GL(A). n_ is associated

with a tuple (P f, _2_), where P_ represents a pair of parts involved

in li, _ represents the union of the parts involved in li and all the

liaisons that should precede li: E c = p/cU{Uj Z_},Vn_, n_ is a child

of n_.

2) A branch bc connecting n_ and n_ represents a precedence relationship

between li and lj: lj < li if n_ is a child of n_. Liaisons corresponding

to the sibhng nodes of a tree or to the nodes of different trees have

no precedence relationship.

Example: Flashlight Assembly

The flashlight assembly shown in Fig. 1 consists of a body(BD),

two dry cells(B1,B2),a bulb carrier(BC), a bulb(BL), a receptacle(R),

lens(G), and a cover(C). Fig. 2 shows the attributed liaison graph repre-

sentation of the flashlight assembly. Fig. 3 illustrates the special process

forest associated with the flashlight assembly. It shows that the cleaning

of the receptacle(R) should precede the testing of the bulb unit(BC,BL),

such that BC, BL, and R should be clustered in a subassembly during

backward assembly planning.

2 Backward Assembly Planning

2.1 Definition

A subassembly of an assembly A, SiIA, is an assembly that can be gen-

erated in one of the feasible assembly sequences for A. A direct sub-

assembly of A, SdlA, is defined as a subassembly of A, which can be

directly assembled with A - sdilA at the last step of one of the fe_sible

assembly sequences for A. The assembly planning of an o,ssembly A,

A = {P(A),GL(A), Gp(A), FI(A)}, is the process of generating a set

of assembly sequences I-la(A) C_ FI(A) based on the given P(A), GL(A)

10

and Gp(A), and the criteria for selecting preferred assembly sequences.

The backward assembly planning of A, BAP(A), represents a particular

method for achieving the assembly planning of A, based on the recursive

identification and selection of preferred direct subassemblies. BAP(A)

first identifies and selects a direct subassembly of A, SdlA(or a set of

direct subassemblies of A, {SdlA, i = 1,..-,m}) and decomposes A into

SdIA and A- SdlA (or {s.d, IA and A- SdlA, i = 1,...,m}). Then,

it recursively applies the process of decomposition to the subassemblies

generated by the previous decomposition until no further decomposition

can be applied.

15

2O

25

3O

2.2 Backward Assembly Planning vs. Disassembly Planning

BAP(A) differs from disassembly planning in that BAP(A) can hmldle

the case where an assembly sequence can not be obtained from the re-

verse of a disassembly sequence. For instance, a sequence of operations

to disconnect a liaison of force-fit interconnection type is often quite dif-

ferent from the reverse of a sequence of operations to interconnect the

liaison. As shown in Fig. 4a, the snaps of part A should be widened in

order to disassemble part B from part A, which may require a new tool.

A more interesting example is given in Fig. 4b, where we can have the

following disassembly sequence: C-A-D-B, since Screw C can be disas-

sembled before Cover A is removed. However, the reverse of the above

disassembly sequence, B-D-A- C, can not be an assembly sequence, since

the inability of holding part D during assembly of screw C prohibits such

an assembly sequence. BAP(A) is able to identify that the direct sub-

assembly of (A,B,C,D) is A but not C, and generate a feasible backward

assembly sequence, A-C-D-B.

2.3 Identification of SdlA

The core of BAP(A) is the identification of SdlA. For the identification

of SdlA, we introduce the following conditions that a cluster of parts

PIA, PIA C A, can be a direct subassembly of A:

1) Accessibility Condition : PIA is accessible by a gripper or a tool.

10

5

10

15

2O

25

3O

2) Stability Condition : PIA and A- PIA are stable, i.e., they either

are self-stable or can be stabilized by external devices.

3) Local Mating Motion Condition : All liaisons between PIA and .4-

PIA have at least one common axis of separation.

4) Path Existence Condition : PIA can be brought to .4.- PIA from

the free space for mating.

5) Interconnection Feasibility Condition : PIA can be interconnected

to A - P]A by applying the interconnection operations defined for

the liaisons between PIA and A - PIA.

6) Process Constraint Condition : PIA meets the constraints defined

by the special process and constraint forest of A, Gp(A).

To avoid the unnecessary evaluation of computationally expensive con-

ditions, such as the path existence condition, we hierarchically evaluate

the above conditions. The following sections describe the details of the

method for testing the above conditions.

3 Part Clustering

The identification of SdlA can be accomplished by checking the above

conditions for individual PIA's defined by the cut-sets of GL(A). Since

the number of cut-sets of GL(A) is often large and grows exponentially

with respect to the number of nodes in GL(A), testing all the cut-sets of

GL(A) results in inefficiency in assembly planning (especially due to the

high cost of testing the path existence condition).

The number of the cut-sets that require the test of path existence

condition may be reduced considerably if we first select those cut-sets

that satisfy the interconnection feasibility condition, the process con-

straint condition, and the stability condition, prior to the evaluation of

the path existence condition. For the selection of those cut-sets satisfy

the interconnection feasibility and process constraint conditions, we first

construct an abstract liaison graph, eL(A), from G L(A), as follows:

1) Merging those parts of A that cannot be interconnected, although

it is assumed that those parts are already brought into their mating

11

5

10

15

2O

25

3O

position. This process identifies the liaisons of GL(-4) that violate

the interconnection feasibility condition, by reasoning whether the

preconditions for a particular interconnection mechanism associated

with a liaison can be satisfied.

2) Grouping those parts that should belong to the same subassembly

to meet the requirement of special processes.

The parts merged together become a supernode, whereas the parts

grouped together become a group node in GL(A). Then, the cut-sets

of GL(A), where a super node and a group node are considered as a

single node, satisfy the interconnection feasibility and process constraint

conditions.

3.1 Interconnection Feasibility and Part Merging

A liaison li between PIA and A - PIA cannot be completed, even if PIA

can be brought into its mating position, if the following conditions are

not satisfied:

1) The feasibility of applying tools and installing connectors required for

the interconnection of li.

2) The feasibility of applying a force, while maintaining stability, re-

quired for the interconnection of li.

The test of the first condition can be done by checking the existence

of an open channel to the designated part locations, through which tools

and connectors can be operated without geometric interference.

The test of the second condition requires reasoning on the force deliv-

ery to a liaison Ii through intermediate liaisons. To be more specific, let

us first categorize a liaison into one of the following three classes:

1) A liaison is said to be floating if there exists no 1)hysical force hold-

ing the parts (associated with the liaison) together. For instance, a

liaison with the interconnection type of "attachment" is a floating

liaison. A floating liaison may or may not be stable, depending on

the geometric constraints imposed on the parts associated with the

liaison.

12

5

10

15

2O

25

3O

2) A liaison is said to be rigid, if there exists physical force holding the

associated parts together, by which the liaison becomes self- stable

even under the presence of external force. For instmlce, a liaison with

the interconnection type of "force-fit", "welding", or "connectors"

may be classified as a rigid liaison.

3) A liaison is said to be firm if there exists a physical force holding the

associated parts together, by which the liaison becomes self-stable,

although it may exhibit a deformation or a freedom of motion under

the presence of external force.

A liaison is associated with its local freedom of motion:

The local freedom of motion of a liaison li, LFl_¢(li). connecting the

two parts, P1 and P2, is represented by the freedom of motion of P1

against P2, LFM(Ii; PllP2) or the freedom of motion of P'2 against P1.

LFM(Ii; P2IP1), where LFM(Ii; PllP2) or LFM(Ii; P'2IP_) is represented

in terms of the coordinates of the assembly to which P1 and P'2 belong.

A local freedom of motion of a liaison may be changed after tile in-

terconnection is completed: A rigid liaison completely loses its local

freedom of motion after the interconnection is completed. A firm liaison

may show a local freedom of motion, when the force applied to the liaison

is more than a certain threshold. To distinguish the local freedom of mo-

tion of li after theinterconnection from that before the interconnection,

LFM+(I_) is used to represent LFM(Ii) after the interconnection. Note

that, due to the orthogonality between motion space and force space,

a liaison connot deliver force to the direction where a local freedom of

motion exists.

To test the feasibility of applying force required for the interconnection

of li, let us define the following:

Definition: An Accessible Node, A-node

A part is accessible by a tool if it is reachable and graspable by a

tool for an assembly operation. A node is accessible if any of the

parts forming the node is accessible.

Definition: An Access Path to a node n, A-path

13

5

10

15

2O

25

3O

An access path to a node n, A-path, is a path starting fl'om an A-

node and ending with the node n without having any other A-node

in the middle of the path. By definition, an A-node has an A-path

to itself. An access path is represented by an ordered set of liaisons

or parts on the path. A node may have one or more A-paths. A

pair of A-paths, A-path(nl) and A-path(n2), nl _- n2, are said to be

independent each other, if they share no common part.

Definition: The Internal Motion Space, M[A-path(n)], and the Static

Force Space, Jr[A-path(n)], associated with A-path(7,)

The internal motion space,)k4[A-path(n)], of A- path(n) is defined

by the union of the local freedom of motion of individual liaisons in A-

path(n), and represents the flexibility that the configuration of parts

along A-path(n) can be deformed by an external force, with the first

part (corresponding to A- node) and the last part (corresponding to

the node n) fixed in space. Note that .M[A-path(7_)] is a function of

the external force applied to A-path(n) when A-path(u) includes firm

liaisons, since the external force determines which finn liaisons can be

broken. As will be explained shortly, the external force to be applied

to A-path(n) is given as the force required for the interconnection of

the liaison which n is associated with, and is subject to the evaluation

of force-deliverability.

Assume that A-path(n) is represented by an ordered set of liaisons,

{ll, 12, "", IF}, with li formed by a pair of nodes, (hi,, ni._), and that

(n/,, ni2) is ordered along A-path(n) in the direction toward n. Then,

.A4[A-path(n)] =U[=I LFM(li;ni, lni2) • The static' force space, Jr[A-

path(n)], of A- path(n) defines the static force that can be deliv-

ered to the node n through A-path(n). jr[A-path(n)] is represented

by the orthogonal complement of .£4[A- path(n)], i.e.. Jr[A-path(n)]

={:t:x,-t-y, :l:z,-t-¢, -t-0,4- ¢} - U_a LFM(l_;n_,ln_..,).

Definition: A Force-Deliverable A-path

A-path(nh) is said to be force-deliverable to ni_ for the liaison li of

(hi,, ni_), if Jr[A-path(n/,)] includes the force required for the inter-

connection of n_ to n_...

14

5

10

15

2O

25

3O

The interconnection feasibility condition of a liaison of (hi,, hi=,) is now

transformed to the verification of the existence of an independent force-

deliverable A-path for nil and hi2. The force-deliverability of an A-path

to nil or ni2 depends on the force required for the interconnection of li.

That is, M[A-path(ni,)] or ,L4 [A- path(n/z)] is determined by the freedom

of motion of individual liaisons along the A-path under the presence of

an external force equivalent to the force required for the interconnection

of li. For instance, in case li is floating, the amount of force required by li

is negligible, and the decision of the internal motion space of the A-path

is based solely on the floating liaisons along the path. Note that, in this

case, the force-deliverability of li becomes equivalent to the feasibility of

maintaining stability during interconnection.

As a summary, we present the following merging principle:

Merging Principle"

The liaison Ii of (nil, hi2) can not be listed as a cut-set, and conse-

quently hi, and ni2 should be merged together, if one of the following

conditions is true:

1) It is not feasible for the tools and connectors (required for the

interconnection of li) to access the designated locations.

2) Either nil or ni2 has no independent force-deliverable A-path,

including the case where either ni_ or ni2 has no A-path at all.

The following algorithm summarizes the process for part merging:

Algorithm: Part Merging

Input: GL(A).

Output: GL(A) with super nodes.

Method: Step 1. Put all the liaisons of GL(A) in Open set. Iden-

tify A-nodes of GL (A).

Step 2. If Open set is empty, then stop.

Step 3. Select a liaison li from Open set in an order starting

from an A-node, and remove Li from Open set.

Step 4. Check whether li requires tools or connectors to com-

plete the interconnection. If not, go to Step 6.

15

10

15

2O

25

3O

Step 5. Check the accessibility of tools or connectors to the des-

ignated locations. If not, merge nil and hi2 _ssociated with li

and go to Step 2.

Step 6. Check whether nil and hi2 have independent, force-deliverab

A-paths. If not, merge nil and ni2 and go to Step 2.

Example : Part Merging of the Flashlight Assembly

The A-nodes of the flashlight assembly are identified as BD and C

(refer to Fig. 2). To show how each liaison in Fig. 2 can be tested for

the merging, let us consider 19 as an example:

For 19 of (C,R), A-path for C is {C}, whereas A-paths for R are {C,R},

{C,G,R}, {BD,B2,BC,R}, {BD,B1,B2,BC,R} and {BD,B1,B2,BC,BL,R}.

I9 does not require a tool or a connector to complete the interconnection.

The part, C, has a force-deliverable A-path, {C}; however the part_ R,

does not have a force-deliverable A-path independent of {C}. This is

because all A-paths for R from BD can not deliver force to R due to the

floating liaisons 11, 12,14,15, and 17. Therefore, 19 is merged.

Fig. 5 shows the result of the merging process.

3.2 Special Process Constraints and Part Grouping

The recursive determination of Sd[A in backward asseml_ly planning

should support the execution of special processes in an order specified

by Gs(A) and satisfy the assembly constraints specified by Gc(A). This

requires the identification of those parts of A that should be grouped

together, or should not be divided into Sd[A and A- SdlA, in order to

implement the special process forest Gs(A) and the assembly constraint

forest Go(A) as follows:

1) Given Gs(A), we first determine which special processes should be

executed with A, i.e., the selection of one or more special processes

executable with A from Gs(A) in a top-down order fl'om the root

nodes (note that there can be multiple trees in G,(A)). We then re-

move out those nodes corresponding to the selected special processes

from G_(A), resulting in G,(A). Since the special processes remain-

ing in G's(A) need to be accomplished in the later stage of l_ackward

assembly planning, we should group those parts in the accunmlated

16

5

10

15

2O

25

3O

part list of each of the root nodes of G's(A).

2) In order to preserve the precedence relationship defined by Go(A), we

should group those parts in the accumulated part list of each child

of individual root nodes of Go(A). Note that a liaison represented

by a root node of Gc(A) is eligible for decomposition at the current

stage of backward assembly planning, and is exempt fi'om grouping.

Grouping Principle:

For a given A, GL(A), Gs(A) and Go(A), we group those nodes of

GL(A) that belong to either of the following lists:

1) E_, associated with each root node, n s of G"_(A) where G_s(,4)0i '

is obtained by removing out from G_(A) those nodes that are

selected for processing with A.

2) E_ associated with each child, n c of individual root nodes ofli '

Example: Part Grouping of the Flashlight Assembly

First, G'_(A) is obtained in Fig. 6, since the testing of the whole

assembly should be done with A.

Then, {B!,B2} and {BC,BL,R), the accumulated part lists of indi-

vidual root nodes of G'_(A), become groups and {BC,BL.R} becomes

another group, as shown in Fig. 5. {G) is a single part and is not indeed

in the group list.

4 Identification of Direct Subassemblies

The problem of finding direct subassemblies is now transformed into the

problem of finding valid cut-sets of the abstract liaison graph. G'L(A).

A cut-set,Ti , decomposes GL(A) into disjoint subgTaphs. A's'(.4. ")i) and"_L

(_LS_(A, 7i), where GLS'(A, 7i) or GLS2(A, 7i) may not be a connected graph,

but may be a collection of multiple connected subgraphs, G_ (,4, 7i) =
- _--:_S,j{_LL'J(A, Ti), j = 1,2,'",ll}orGS_(A, Ti)={GL" (A, Ti),j = 1,2,.--,/2).

A cut-set, 7i, is valid if: 1) Each connected subgraph.G_ _i(,4, 7,:), J =

1,2,.. . ,/1, GzS_(A, Ti), j = 1,2...,/2, generated by the ('ut-set,'_i in-

cludes at least one A-node. 2) There exists a collision fi'ee path between

the cluster of parts, P]A, corresponding to (_SL'(,4, 7i) and

17

10

15

2O

25

3O

AS
A - PIA, corresponding to GL_(A, 7i) for their mating.

The first condition ensures that PIA and A - P]A, can be handled by

a tool for assembly, whereas the second condition ensures that S,.dlA can

be placed in its mating position. For the test of the second condition,

let us define the following:

1) The predicate LM(P]A,A- P]A) is true if all the liaisons between

P]A and A - P]A has at least one common axis of separation.

2) The predicate PE(P]A,A- P]A) is true if there exists a 1)ath along

which the cluster of parts P]A can be brought to its mating position

without colliding with the rest of the assembly.

Since the premise that LM(P]A,A- P]A) is not true is a sufficient

condition that PE(P]A,A- P]A) is not true, the test of L.':II(P]A,A-

P]A) preceding the test of PE(P[A, A- P]A) can provide a considerable

reduction in the mlmber of the costly PE(P]A, .4- P]A) test.

Algorithm: Identification of Direct Subassemblies

Input: GL(A), A-Node Set = {all the A-nodes of (_'L(-4)}, Tested Cut-

set List={0}, Valid Cut-set List={0}.

Output: A list of direct subassemblies specified in Valid Cut-set List,.

Method:

Step 1.

Step 2.

node

If A-node Set is empty, stop.

Select an A-node from A-node Set, and remove it fl'om A-

Set.

Step 3. If there exists a cut-set 7i,7i _ Tested Cut-set List, such

A,so(A, _)that GLs_ (A, 7i) includes the A-node selected in Step 2 and ,, L-

includes at least one A- node of GL(A), then continue. Otherwise.

go to Step 1.

Step 4. Put 7i into Tested Cut-set List.

Step 5. Test 7i for LM. If it is false, go to Step 3.

Step 6. Test 7i for stability. That is, if one of the subassemblies

produced by "yi is unstable or the subassemblies produced by "Yi

have no common assembly pose among themselves, go to Step 3.

18

5

10

15

20

25

30

Step 7. Test 7i for PE. If it is true, put 7i in Valid Cut-set List.

Otherwise, go to Step 3.

The details of the method for testing the stability of ")i will be pre-

sented in the next section.

5 Subassembly Evaluation

The direct subassemblies identified from GL(A) are subject to flarther

evaluation for the selection of preferred direct subassemblies.

The evaluation of a subassembly is based on the following criteria: 1)

Stability, 2) Directionality, and 3) Manipulability, which leads to aal esti-

mate of assembly cost involved in local assembly through the identifica-

tion of the required holding devices and reorientations during a_._sembly.

Note that the optimal selection of a direct assembly at each stage of

backward assembly planning based on local evaluation may not yield a

globally optimal plan. As will be shown later, this problem is handled by

the AO* algorithm with its cost and heuristic functions defined in terms

of the above criteria.

5.1 Stability

The stability of a subassembly can be represented in terms of the internal

freedom of motion associated with the subassembly. To present a method

formalizing the internal freedom of motion of a subassembly, h,t us first

define the following: A cluster of parts in S/IA, AIIS/IA). is said to be

floating if it is connected to the rest of S d A only by floating liaisons.

PkI(S/IA) corresponds to a subgraph of GL(S/IA) that can be separated

from GL(S/IA) by a cut-set consisting only of floating liaisons (denoted

here as a floating cut-set). A cluster of parts in S/,4, is

said to be disconnected, if it has no liaison connected to the rest. of

S/IA. PkI(S/IA) corresponds to a disjoint subgraph in G,,(S/IA). The

stability of S/IA can be defined based on a set of floating clusters of parts,

/Skl(sd A), and disconnected clusters of parts, P,.I(S/IA). in,.luded in

S/IA. Let us assume that a floating cut-set, fk, of "-' _e,/_C t oi A) decomposes

S/IA into PkI(S/IA) and S/IA-PkI(S/IA). The local freedom of motion of

k, LFM(), can be defined as the local freedom of motion of/_kI(S/IA)

19

5

10

15

20

25

30

against sdi [A- /bk[(s/dlA):

LFM(Fk) _ LFM(PkI(SdlA),Sdi]A- [gkI(sdi l-4))

= ALFM(Ij;[:'k[(sdilA),Sdi[A - PkI(S_II.4)),

for all lj, lj E fk.

Note that Pkl(Sdl A) should be chosen in such a waythat s/dl.4-

/Ski(S/aliA) includes one of the A-nodes of the assembly A that will be

used for holding sidlA during the mating of SdlA with A- SdlA. Now

let us define the following:

Definition: Internal Freedom of Motion of SdlA

The internal freedom of motion of S_tA, IFM(S_ .4), is defined as a

collection of assembly directions to which S/IA can be broken apart.

IFM(S_IA) can be calculated by the following rules:

t) P I(S IA)and P I(S/IA) _ IFM(S/IA) = O:

2) P I(S/IA) butBPkl(S/lA) _ IFM(S/I A) = u LF3I(;_.), V÷_.;

3) 3PkI(S/dIA) ==, IFM(SdIA) = { 4- x, 4- y, + z, 4- t:,, 4- O, 4- ¢}.

°

As an example, let us consider a simple 2-D assembly shown in Fig.

Since/1, 12 and 13 are floating liaisons, we have that

7=1-- {ll,12}, r2-- {/1,13}, and 7=3= {l,e.l:_}.

Assuming that, SdlA is oriented with reference to the asseml_ly pose

of A as shown in Fig. 7, and that P1, an A-node of A. is selected for

grasping of sdl A, we have

LFM(_,) =

LFM() =
LFM(_3) =

Therefore,

LFM(P2 u P3,P1) = {+x, +:}.

LFM(P2, P1 U P3) = {+:},

LFM(P3,P1UP2)= {+x. +:}.

IFM(SdilA) = {+x, +z}.

Based on the definition of IFM(SdlA), we can establish the stability

condition for s.d, IA, as follows:

2O

10

15

2O

25

3O

1) S_[A is said to be self-stable, if IFM(Sd[A) is mill, or IFM(SdIA) has

at most a single translational freedom of motion with a rotational

freedom of motion only about the axis of translation (i.e. /3_.I(Sd[A)

and SdlA- i_kl(SdlA) form a single peg-and-hole type mating rela-

tionship).

2) SdlA is said to be stable with the assistance of holdil_g devices, if

each _[:'kl(SdlA) or [='kl(SdlA) contains an A-node of the assembly ,4.

This implies that the mating operation of SdlA can be stal)iIized and

completed with the assistance of external devices hohling/bh.[(Sd[A)

and /bk[(Sdld) of more than a peg-and-hole type of" motion fl'ee(lom

against S.d,IA - [:'kl(S.d, lA).

3) Otherwise, S_[A is said to be unstable.

A stable SialA, whether it requires a holding device or not, has one or

more stable assembly _poses, where an assembly pose is tel)resented by

assembly coordinate aligned with the direction of part stacking against

gravity. For instance, SdlA with null IFM h (denoting IF:_I after the

incorporation of necessary holding devices) can have assembly pose of

=l=x, +y and +z.

SdlA with IFM h of {+x, =[=¢} can have an assembly pose of +x, re-

quiring a reorientation of SdlA to align +x with the stacking direction

(against gravity).

Let us now consider the stability associated with an assemlfly opera-

tion:

Definition: Stable Assembly Operation

The assembly operation between S [A and A- Sd]A is said to be sta-

ble, if SdlA and ,4- sid]A have at least one common stable assembly

pose defining a stable assembly direction.

Now, the evaluation of Sd[A in terms of stability is based on the sta-

bility of SdlA and A- S_IA, as we]] as the stability of the assembly

operation between Sd]A and A- S_IA:

1) If either Sd[A is unstable or A- Sd[A is unstable, S/[A can not be

selected for a direct subassembly of A.

21

5

10

15

2O

25

3O

2) When S lA and A- S lA have no common stable asseml,ly pose, SdIA

can not be selected for a direct subassembly of A.

3) Otherwise we evaluate the assembly cost incurred by the need to

stabilize SdlA and A-s.d, IA as well as the assembly operation between

sidlA and A- S_ilA.

The assembly cost is directly related to the number of holding devices

required for stabilizing SdlA and A- SdlA, mad the necessity of reori-

enting SdlA and A- sdilA for a stable assembly operation. The latter

will be analyzed in more detail in the next section in relation to the

directionality in assembly and the determination of best assembly poses.

5.2 Directionality and Assembly Pose

The directionality in assembly is another important factor affecting as-

sembly cost. Locally, a stacking operation is considered more cost-

effective than a non-stacking operation. Globally, a single direction of

assembly is preferred to multiple directions of assembly. Therefore, the

evaluation of directionality in assembly should be based on both the lo-

cal assemlflv direction between S_IA and A- SidlA, and the uniformity

of assembly directions embedded in sdilA and A- SdlA.

It should be noted that whether or not the local assemlJly direction

between S d A and A - SdlA can be a stacking direction depends on the

choice of the mating pose (as one of the stable assembly poses common

to S_IA and A- SdlA). However, the selection of a mating pose between

SdilA and A- s.d,IA based solely on implementing a stacking operation

may incur the need to reorient the assembly of Sdl.4 and .4- S/IA. The

assembly pose of SdlA or A- S_tA should be chosen from the set. of stable

assembly poses of SdlA or A- SdlA, which may differ from the selected

mating pose between SdlA and A- SdlA. This also incurs the need to

reorient S/d A or A- S d A, so that SdilA or A- sdl.4 is brought into its

pose. This implies that the determination of an assembly pose and an

assembly direction should consider the trade-off between maximizing the

directionality in assembly and minimizing the reorientation of assembly

pose. In principle, it is desirable to avoid a costly reorientatiom unless

the reorientation is required to allow many local stacking operations in

22

the subsequent backward assembly planning, thus justifying the cost of

reorientation.

5

10

15

2O

25

3O

< Cost involved in the Local Mating Operation between SdlA

andA-SdlA >

Let us first introduce the following notational conventions:

A
1) tl, t2 -- an assembly pose of Sd_IA and A- S/IA represented with

reference to the previously determined assembly pose of .4, t*.

2) = a set of stable assembly poses for S/I.4 and .4 - SdlA.

3) {t_2 } z_= a of a se Uypose to a,.l S/IA,
i.e., {t_2 } = {t_} _ {t_}.

We can associate each pair (t_, t_), where t_ e {t_} and t:_ E {t_}. with

the relative assembly cost, L, involved in a local mating operation. L can

be determined based on the required number of reorientations and the

directionality of mating operations (whether it is a stacking operation or

a non-stacking operation), as well as the difficulty of handling the related

subassemblies.

The reorientation of the assembly poses of SdIA and A- S_].4 during

assembly becomes necessary due to:

1) The need to transform t_ and/or t_ into a mating pose, t?.2, t?.2 E {t_},

in the case where t_ _= t_2 or t_ ¢ t_2.

2) The need to transform the selected mating pose, t_2. into the assembly

pose of A, t*, in the case where t_2 _ t*.

Table 1 shows the reorientations required for the mating l_etween S_IA

and (A- S/a}.4), under various conditions on t[and t._. The direction-

ality of the mating operation can be tested by transfornfing the mating

directions (between Sd]A and A- Sd]A) in terms of t* into the mating

directions in terms of t_2, where the mating directions in terms of t* are

identified during the verification of the path existence.

The relative assembly cost, L, involved in a local mating operation

can now be calculated for individual (t_,t_), by

L = [71REO(t_) + 72REO(t_) + %REO(t_.2)]oo + ")4/3o,

23

TABLE 1" The Reorientations required for the Local Mating Operation

between SdlA and A- SdlA

5

10

t* ¢ {th}

t* c {q2}

Conditions The Required Reorientations

0

t_ # t* and t_ _: t*

15

2O

25

3O

where REO(t_),REO(t_), and REO(t'12) are binary functions of either 1

(when the reorientation of the corresponding assembly pose is required)

or 0; c_0 and rio, represent respectively the normal relative assembly cost

due to a reorientation and a mating motion, 71, 72, 73 and "_4represent the

effect of part manipulability on the relative assembly cost (refer to the

next section for more detail). The best assembly poses of S/IA, t*(S_IA),

and A- S/IA, t*(A- S_ A) can be determined based on achieving the

minimum relative assembly cost, L, due to the local mating operation.

< Cost involved in the Assembly of S d ,4 and A - S_/1.4 >

Let us now consider the uniformity of assembly direction embedded

in Sd[A and A- SdlA, as a means of globally estimating the relative

assembly cost, R, involved in the assembly of SdlA and A- SdlA. Since

the exact evaluation of R can only be obtained after a complete assembly

plan is formulated, we indirectly estimate R based on the following two

major factors contributing to R:

1) The estimated relative assembly costs, Ro(SdilA) and Ro(.4- SdIA),

due to the number of reorientations involved in the assembly of SdlA

and A- sdilA.

24

5

10

15

2O

25

3O

2) The estimated relative assembly cost, R (Sdl A) and R_(A- S/IA),

due to the number of stacking and non-stacking operations involved

in the assembly of S.d,IA and A- S d A .

The estimation of Ro(Sd]A)is based on the directional uniformity of Slid

under the special consideration of the necessary reorientation(flip-over)

of the bases of SdlA, as follows:

SdilA is said to have m degrees of directionality in _ ((= x,y, or z),

denoted as D¢(SdlA) - m, in the case where there exist m liaisons,

li, i- 1..-m, in GL(S.d, IA)such that +¢ or -¢ E {LF._l(li)} for i = 1...m.

Note that in defining the directionality of SailA, x, y, and _ are referenced

in terms of the assembly pose of A, and LFl_](li) can be computed

either by LFM(Ii;P1,P2) or LFM(li;P2, P1), since LF._I(li:PI,P_) =

-LFM(li; P2, P1).

Sd[A is said to have the directional uniformity of r in (. denoted as

U¢(Sd[A) = r, in the case where D¢(S d A)/Card {li, lie G'L(Sdi .4)} = r,

where r < 1. Sd[A has the maximum directional uniformity in (, if Sd[A

has the maximum directionality in (.

Now, let us select U_(SdIA) from {U_(SdIA), _ = x,y, o1" :} in a de-

creasing order until the accumulation of the selected U_ (S_11.4)'s becomes

greater than or equal to unity. Define {_*(Sdld)} as a set containing ('s

which are associated with the selected U¢(SdlA)'s. Then. {c(Sd]A)} rep-

resents the minimum number of distinctive assembly directions involved

in the assembly of SdIA, such that Card{_*(SdlA)} - 1 provides an es-

timate of the lower bound of the number of reorientations required for

the assembly of Sd]A. A more accurate estimate of the required number

of reorientations can be obtained by identifying the base flip-overs that

become necessary when parts are connected to the both side of a base

such that {LFM(li;Parti, Base), VParti linked to base} includes both

+_ and -_. To be more specific on this point, let us define the following:

A base node, riB, of S.d,IA , nB(SdIA), is a node of GL(SdIA) which has

the degree far greater than the average degree of a node of GL(S/I.4),

i.e., the degree of nB(SdlA) >_ k. Average Degree of G'L(SdlA). where k

is a constant such that k >> 1. A base node nB(Sdl.4) is said to have

the directionality, D_B(SdlA), where D_B(Sd[A) is the set of independent

25

5

10

15

2O

25

3O

directions involved in {LFM(Ii; Pi, Base), V/i: li is linked to riB}, where

D,B(Sd[A) C_ {+x,-x,+y,-y,+z,-z}. In the case where D,B(Sid[A)

contains +_ and -_ (_ = x, y, or z), it is necessary to flip-over the base

to accomodate +_ and -_.

Considering the above, Ro(Sd[A) can be estimated by the following

equation:

where

a_= { 2,1,

Ro(Sd[A) = ao[(_ a_.b_- l)+Q],
_=z,y,z

if +_ and -_ C D,B(Sd[A), n, C {riB}:

A set of base nodes in GL(Sd[A)

otherwise

1, if _ C K*(S/[A)}b_ = 0, otherwise

1, if the selected best pose of sd[g ¢ {_*(S d .4)}c_ - 0, otherwise.

The estimate of relative assembly cost for Sd]A, R(S/[.4), is the addi-

tion of the estimate of the relative assembly cost due to required reori-

entations, Ro(Sd[A), and the estimate of the relative asseml)ly (-()st due

to required part matings, R_(Sd[A):

R(Sd[A) = Ro(Sd[A) + R_(S d.4).

Since the reorientations considered in the above computation of Ro(Sd]A)

allow part matings to be done by stacking operations, R._(S/].4) can be

estimated simply as

R (S, IA) = n0,"N,

where N represents the number of parts included in Sd[A.

An alternative way of estimating R(S_d[A) is that Ro(Sd[A) is estimated

based only on the required number of base flip-overs, so ms to avoid costly

reorientations as much as possible. Instead, the assembly of sd[.4 allows

non-stacking operations the cost of which should be incorporated into

R_(Sd[A). The computation of Ro(Sd]d) due only to the l,ase flip-overs

can be computed simply by applying different a_ to the above equation:

26

5

10

15

2O

25

3O

a_

, if +(and -(6 D,B(Sd[A), nB • {riB}"

A set of base nodes in GL (S d A)

0, otherwise

Whereas, Rs(SdlA) can be computed by

Rs(SdlA) = N. [floaU_,,_,(SdlA) + f102(1 - U_,,,,(S/[A))],

where

U_,,._ x{U_(S A),_ = x, y and z}.

Then, R(SdlA) is chosen as the lower estimate from th(" two alterna-

tives described above.

Finally, the global estimation of the relative assembly cost, R, due to

directionality, can be obtained by R = R(Sd[A) + R(A- S/I.4).

5.3 Manipulability

A subassembly subject to either a reorientation and/or a translation

for mating should be easily manipulable by tools or hands. The term

manipulability of SdlA is used to quantify the efficiency in orienting sd[.4

and in handling of SdlA. The manipulability of sd[.4 is closely linked

to the size, shape and weight of sdilA. More specifically, the orientation

efficiency can be measured based on the symmetry and marked polarity

in the geometry and weight, of Sd[A, whereas the handling efficiency can

be measured based on the regularity in the size, weight and shape of

SdlA, and the flexibility and fragility of SdlA, which det('rmin(_ the need

for special tooling.

The manipulabilities of S.d,IA and A- Sd]A affect the relative assembly

cost of the local mating operation between Sd]A and .4- S_ t .4, since they

directly influence the relative assembly cost for the required reorienta-

tions as well as the mating motion.

To tal¢e this into consideration, in the previous section, the relative

assembly cost for a reorientation, a, as well as the relative (()st for a

mating motion, /3 were determined by multiplying the manipulability

coefficient, 7, to their nominal values, a0 and/30.

27

TABLE 2: The Criteria for Measuring Manipulability of a Part or a

Subassembly

5

10

Orientation Efficiency Relative Assembly Cost

Part tangles, nests or shingles 5

Asymmetric part without marked 5

polarities of weight or geometry

Asymmetric part with marked 3

polarities of weight or geometry

Symmetric part 1

Part delivered to the assembly station 1

with a known orientation

Handling Efficiency Relative Assenflfiy Cost

Large off center weight potentially 5

causing loss of orientation

Very large parts 5

Very small parts 5

Fragile 3

Flexible 3

Irregular shaped part requiring 3

special tooling

Easily handled part with standard tooling 1

(tooling can handle more than 1 part)

15

20

25

30

The manipulability coefficient of sdilA, 7(SdIA), can be determined as

the ratio between the sum of the score for each criterion of orientation

and handling efficiency for SdilA and the sum of the nonfinal scores for

each criterion of orientation and handling efficiency.

6 Selection of Best Subassemblies

based on AO* Algorithm

As indicated earlier herein, the selection of SgIA based solely on the rela-

tive assembly costs involved in the local mating operation l_etween S/1.4

28

5

10

15

2O

25

3O

and A - SdlA may not produce a globally optimal assembly plan. There-

fore, we adopt the AO* algorithm with a properly defined evaluation

function to search for a globally optimal or suboptimal plan.

The search space to which the AO* algorithm is applied can be rep-

resented by an AND/OR tree.

The decomposition of an assembly A in backward assembly planning

implies the expansion of an AND node (representing an assembly A)

into its OR children representing the alternative decompositions of A,

{(SdlA, A- SdlA),i = 1,...,/}, and its AND grandchildren {Slid and

A- SdlA, for i = 1,... ,l} attached to indivisual OR children, as shown

in Fig. 8. The AO* algorithm searches for an optimal solution tree by

expanding those AND nodes of the current potential solution tree that

are open to expansion, and by evaluating the next alternatives based on

an evaluation function.

An AND tree is an AND/OR tree every AND node of which has no

more than one OR child. A potential solution tree is an AND tr_,e having

the mininmm value for the evaluation function at the era:rent stage of

search, whereas a solution tree is an AND tree with leaves consisting of

only single parts.

The LocaI Cost, ct(n°), associated with an OR node, 77°, represents the

relative assembly cost incurred by the local mating operation t_etween

SdIA and A- S/IA. c,(n °) can be computed by the weighted sum of the

following three components:

1) The relative assembly cost due to the stabilization of" S_tl.4 and A -

SdlA by using holding devices and/or reorientations, as described in

Table 1.

2) The relative assembly cost due to the reorientations and translations

required for mating between S_dtA and A- S/I.4, as described in

Table 2 and Table 3. Note that this cost is linked to the directional-

ities and best assembly poses for S d A and A - Sdl.4. as well as the

manipulabilities of Slid and A- Sdld.

3) The relative cost of the special processes assigned to .4, the parent
0

node of n i.

29

5

10

15

2O

25

3O

The Accumulated Cost, ca(T['), associated with an AND tree, T_, rep-

resents the weighted sum of the following two components:

0
1) The sum of ct(n °) for all n °, n i E T_.

2) The depth of T_ defined by the maximum depth of n ° for all n °,
0

ni E Tia, where the depth of an OR node is measured in terms of the

depth among OR nodes without considering AND nodes.

0
The Local Heuristic Estimate, he(n°), associated with an OR node, n i,

represents an estimate of the optimal relative assembly cost to assemble

SdlA and .4- SdlA, and can be computed by the weighted sum of the

following components:

1) The relative assembly cost, R, associated with the directional unifor-

mity of Sd[A and A- S d A, as defined in the previous section.

2) The relative assembly cost, S, associated with the internal stability

of Sd[A and A - S, IA

where (S IA) and S tA) represent the int,ernal stability of

S IA and A- SdlA, respectively, and axe defined by

_(SdIA) = the number of floating liaisons in GL (S_l[-4)

the average degree of a node in GL(S_II.4)

the number of floating liaisons in G L (.4- SdlA)
x(A- S/IA) =

the average degree of a node in GL(.4- sYl.4)

and t_ represents the relative assembly cost due to a holding device.

Then, the evaluation function, ey(T['), associated with an AND tree

Ti a simply becomes

e/(T_) -- c.(T_) + qh_(T_),

where q adjusts the contribution of h_(T_ _) to el(T_') in relation with

c,(T_).

7 Assembly Planning with DFA Analysis

As shown in the previous section, the evaluation of the h)('al cost. ct(n°).

at an OR node, n °, is based on the detailed analysis of cl(n °) in tern_s of

3O

10

15

the stability, the directionality, the assembly pose and the manipulability
0

associated with the assembly of the children of n i , as well as the cost of
0

special processes assigned to the parent of n i .

The result of this analysis at each OR node of the search tree can

directly be used for the identification of the assemblability of a product

and for the evaluation of DFA criteria, which can be fed back to the

designer for proper design evaluation and modification. The assembly

planner developed here has both the capability of selecting an optimal

assembly partial order as well as the capability of conducting DFA anal-

ysis, serving as a powerful tool for automating the DFA evaluation and

modification cycle in concurrent engineering.

DFA analysis performed during the process of computing the local

cost, c,(n°), associated with an OR node, n °, n o ,_ {Sd[A,A- Sd[A}, is

summarized into the DFA analysis table for n °, as illustrated in Table 3.

Now, the analysis of DFA for a given product can be acconll)lished

based on the DFA tables associated with all of the OR nodes of the so-

lution tree.

2O

25

3O

Example: The Flashlight Assembly

The AO* algorithm with the cost and heuristic functions defined in the

previous section is applied to the flashlight assembly for finding an op-

timal solution tree and performing DFA analysis. Fig. 9 illustrates first

several nodes of the AND/OR search tree formed by the AO* algorithm,

where DFA analysis tables are attached to individual OR nodes.

At root node(Node 0), which corresponds to the whoh' product of

flashlight, there is only one direct subassembly(Node 1). S1 or $2 im-

plying that there is only one way to disassemble the product in the first

step. Node 1 is expanded to it's AND children, (2,3). Further expansion

of Node 2 can be done easily because the grouping of B1 and B2 pro-

vides only one alternative in selecting direct subassembly. At Node 3,

the abstract liaison graph is shown in Fig. 10. Note that $3 is a group

node resulted from the special process forest.

The algorithm to identify direct subassemblies is al)pli('d to $2 and

the result is shown in Table 4.

Therefore, at Node 3, the system identifies two alternative direct sub-

assemblies, C and $3. These two alternatives are represented as the OR

31

5

10

15

2O

25

3O

0 .0 {5'/IA, A - S',alA}TABLE 3: A DFA Analysis Table for an OR Node, n i ,

DFA Analysis

Stability

Manipulabili

and Direc-

tionality

Process

Category

Total

relative cost

due to the

need to sta-

bilize S_IA

and/or A-

S_]A

;yTotal
relative cost

involved in

mating be-
tween $4 A

t

and A -

sdilA due to

manipula-

bility and
directionality

Total rela-

tive cost for

the special

processes

assigned to
A
Total cost

0
at rt i

DFA Criteria Details

The number of

holding devices re-

quired for the sta-

bilization of SialA

and/or A- S_IA

The number of re-

orientations re-

quired for the sta-

bilization of SdIA

and/or A- S]A
The manipulabil-

ity factors

(Refer to Table 2

for more details)

The best assem-

bly poses for S_[A

and/or A - S_[A

The number of re-

orientations

required for mat-

ing between SdIA

and/or A- S_IA

The translati-

nal motion during

mat-

ing between SdlA

and/or A - SialA

The list of special

processes assigned
to A

The relative

cost due to lhe

required hold-

ing devices

The rela! ire

cost, due to tlw

required reori-

entaion

The relative

cost, due to the

required reori-
entations

The relative

cost,

due to the re-

quired trans-
latinal motion

for mat, in_
The relative

cost of indi-

vidual special

processes

i

32

5

10

15

2O

25

3O

TABLE 4: Valid Cut-Sets or Direct Subassemblies generated from

GL(A) for $2 in the Flashlight Assembly

Cut-set tSiA A- PIA Result

{19,/lO} C S3+G Valid

S3+G C Valid

{/s, llo} G $3+C Failed in the LM te._t

$3+C G Failed in the LM test

{ ls, 19} $3 C+G Valid

C+G $3 Valid

nodes, 5 and 6, in Fig. 9, while the two OR nodes are expanded to their

AND children, (9,10) and (11,12), respectively. The systenl then calcu-

lates the evaluation function at Node 5, e/(Node 5), and the evaluation

function at Node 6, ey(Node 6), based on the local costs, or(Node 5) and

cl(Node 6), and the local heuristic estimates, he(Node 5) and h,(Node 6),
as follows:

At Node 5, the system identifies that

1) C is self-stable, but S3+G needs one holding device due to Is.

2) The best assembly pose of S3+G needs one reorient at ion so

that BC+BL+R is on top of G. The assembly pose of the

pr6duct is initially given in such a way that C is on the right

side to BD.

3) C needs one reorientation so that S3+G can be stacked onto

C.

4) S3+G+C need to be reoriented after the mating operation of

S3+G and C.

5) The manipulability coefficients for S3+G(TI), C(3 _) and

$3+G+C(73) are assigned to 0.8, 0.4 and 0.4, respectively,

based on Table 3.

Therefore,

c_(Node5) = 15 (one holding device)

+10 × 0.8 + 10 x 0.4 + 10 x 0.4 (3 reoricntations)

+1 x 0.8 (stacking operation)

+2 (depth of Node 5)

= 33.8

33

5

10

15

2O

25

3O

For the calculation of the local heuristic estimate at Node 5, the system

identifies the following:

As a

1) The estimates of the relative assembly cost due to the direc-

tional uniformity, R, and the internal stability, S, of C are

zero, since C is a single part.

2) S3+C+G consists of 4 parts with the maximmn ufiifornl di-

rectionality of 1 in +x. Therefore, R0(S3+C+G) = 10 x 1 =

10 and R_(S3+C+G) = I x 4 = 4. As a result,the estimate of

the relative assembly cost due to the directional uniformity,

R, of S3+C+G is 14.

3) S3+C+G has 3 floating liaisons and has the ax:erage degree

of node of 2. Therefore, the estimate of the relative assembly

cost due to the internal stability, S, of S3+C+G is 22.5 (S =

15×3 _3_ 22.5), where 15 is used for the relative asseml_lv

cost for a holding device.

4) The effect of Node 5 on assembly parallelism, wp, can be

estimated as 6 (wp = 10 x 3/5 = 6 with 10 assigned as a

weight).

result, we have that h_(Node 5) = 42.5. Therefore, we have that

e/(Node 5) = ca(Node 5) + 7/h_(Node 5)

= 76.3 (with r/ = 1.0).

At Node 6, the system follows the same steps that are used for calcu-

lating e/(Node 5), and results are the following:

co (Node 6) = 22.6

Therefore, we have that

e.,,-(Node 6) = ca(Node 6) + qh_(Node 6)

= 54.6 (with q = 1.0).

Finally, comparing e/(Node 5) and e/(Node 6), the system selects

Node 6 for further expansion. The result of such an expansion is shown

in Fig. 9. This process is continued until all nodes become single parts.

Fig. 11 illustrates a process implementing the foregoing, in which

the merging process is performed (block 110 of Fig. 11). flJllowed by the

34

10

15

2O

25

3O

grouping process (block 120), both of which reduce the number of poten-

tim direct subassemblies which may be identified. All direct subassem-

blies are identified (block 130). Then, an AND-OR tree is constructed

from a knowledge of all direct subassemblies (block 140). The local cost

of each OR node is computed (block 150), and the tree is "pruned" to

eliminate the higher cost OR nodes (block 160). Finally, an assembly

sequence is carried out in accordance with the pruned AND-OR tree.

Fig. 12 illustrates a system for carrying out the invention, including

a data base representing the assembly design definitions 180 (such as

the liaison graph or map, the assembly constraints and special process

constraints), a computer 190 which performs the process of" Fig. 11 to

generate a sequence of assembly instructions 200.

8 Conclusion

This specification contributes to automatic assembly 1)lanning closer to

reality by ._

1) Developing a backward assembly planner which handles the case where

an assembly sequence is not the same as the reverse of a disassembly

sequence.

2) Improving planning efficiency with the reduction of search space by

merging and grouping parts based on interconnection fcasilfility and

special process precedence constraints.

3) Establishing assembly process planning by incorporating such special

processes providing as testing, cleaning, etc, in assemlfly planning.

4) Providing subassembly evaluation criteria with a direct connection to

assembly cost: especially the method for the stability and dii'ection-

ality of an assembly is presented through which the required number

of holding devices and reorientations during asseml_ly is identified.

While the invention has been described in detail by specific reference

to preferred embodiments thereof, it is understood that variations and

modifications may be made without departing from the true spirit and

scope of the invention.

5

10

15

2O

BACKWARD ASSEMBLY PLANNING WITH DFA

ANAYLSIS

ABSRACT

An assembly planning system that operates based on a recursive de-

composition of assembly into subassemblies, and analyzes _ssembly cost

in terms of stability, directionality, and manipulability to guide the gen-

eration of preferred assembly plans. The planning in this system in-

corporates the special processes, such as cleaning, testing, labeling, etc.

that must occur during the assembly, and handles nonreversible as well

as reversible assembly tasks through backward assembly planning. In or-

der to increase the planning efficiency, the system avoids the analysis of

decompositions that do not correspond to feasible assembly tasks. This

is achieved by grouping and merging those parts that can not b(' decom-

posable at the current stage of backward assembly planning due to the

requirement of special processes and the constraint of int(,rconnection

feasibility. The invention includes methods of evaluating assemlfly cost

in terms of the number of fixtures (or holding devices) and reorientations

required for assembly, through the analysis of stability, directionality, and

manipulability. All these factors are used in defining cost and heuristic

functions for an AO* search for an optimal plan.

25

3O

(

.....'@.... 0
FIG. 1

[IGI{GI]

TESTING [P'(A),P(A)]

TESTING

[_B1 ,B2I{B 1,B2_]

FIG. 3

[IBC,BL, R}
IBC:,BL,RJ]

[IRI IRI]

GI IGI]

_ [IB1,B2IIB1,B2}]
_ [IBC,BL, RI

IBC.BL, RI]

[IR} IRI]

FIG. 6

NASACaseNO.NPO-_/-._-_/,,_ "---/_('(

(DEFSCHEMA i.2

((INSTANCE LIAISON)

(CLASS FLOATING)

(MATING PARTS P2 P3)

(INTERCONNECTION ATTACH)

(FEATURES(FI.P2 FI.P3(+X -X)))

(CONNECTION TYPE PLACE ON)))

(DEFSCHEMA P3

((INSTANCE PART)

(CLASS GENERAL)

(FEATURE-LIST F1.P14 F2.P14)

(COORD(7 0 10 0 90 0))

(VOLUME((CYLINDER 14 1)

o o o o o o)))

(DEFSCHEMA F2.P14

((INSTANCE FEATURE)

(FEATURE OF P3)

(TYPE CONNECTION)

(SHAPE(CYLINDER 6 1.8))

(LOCATION(O 0 0 0 0 0))))

FIG. 2

NASA Case I_!o.NPO/_({

A

FIG. 4a FIG. 4b
+Z

-Z

-Z

Pl

12

\ /

/I\ /13\ /

O
P3

FIG. _'a FIG. 7 b

ROOT(PRODUCT)
IC

AN_XS FIG. 8

ORO 0 0 C.;
8 9 10 11 12 13

NASAC,,or:o.N_'O__/_S/77_

_) : A-NODE

...... : FLOATING LIAISON

• : FIRM LIAISON
= RIGID LIAISON

= MERGING

$1 _: GROUPING $2

FIG. 5

$3

._..__.. i A-NODE

...... FLOATING LIAISON
FIRM LIAISON
RIGID LIAISON

MERGING= GROUPING

110

FIG. 10

====.=,,,,o.=_o_/_.__t_G.__q

0¢=33.8, he =42.5

S

M
AND

D

TOTAL

1 15

0 0

0.8,0.4,0.4

3 16

1 0.8

31.8

ef=76.3

2

Isll

4

IBD,BI+B2}

C¢=22.6, h,e =32

0 0
S

1 10

M 0.6,0.4,0.4
ROOT (PRODUCT) AND 2 10

D 1 0.6

TOTAL 20.6

1 |SI,S2I e.f=54.6

,s Is21

6

Ic,s3+GI Is3,c+cl

O

5

7 8 9 10 11 12

Icl
IBI+B2} Iss+GI

Is31 Ic+GI

FIG. 9

N_S,_CaseNo.NPO_

MERGING

ASSEMBLY
DESIGN

DEFINITION
DATA

,8o]
1,o--iCOMPUTER I

GROUPINGI 200_ ASSEMBLY
COMMAND

130 SEQUENCE

-'] IDENTIFY DIRECT ISUB-ASSEMBLIES

140 _ CONS_TRUCT FIG. 1 2

AND-OR TREE I

1so
-"]COMPUTELOCALCOSTIOF EACH OR NODE

170 COST NODES

PERFORM ASSEMBLY OPERATION
CORRESPONDING TO REMAINING

AND-OR TREE

FIG. 11

